

Journal of Pure and Applied Algebra 130 (1998) 217-222

JOURNAL OF PURE AND APPLIED ALGEBRA

A note on linearization of actions of finitely semisimple Hopf algebras on local algebras

M. Boratyński^a, Andrzej Tyc^{b.*}

^a Dipartimento di Matematica, Università degli Studi di Bari, via E.Orabona 4, 70125 Bari, Italy ^b Faculty of Mathematics and Informatics. N. Copernicus University, ul. Chopina 12–18, 87–100 Toruń, Poland

Communicated by C.A. Weibel; received 28 March 1996

Abstract

Let *H* be a Hopf algebra over a field *k* and let $H \otimes A \to A$, $h \otimes a \to h.a$, be an action of *H* on a commutative local Noetherian *k*-algebra (A, m). We say that this action is linearizable if there exists a minimal system x_1, \ldots, x_n of generators of the maximal ideal *m* such that $h.x_i \in kx_1 + \cdots + kx_n$ for all $h \in H$ and $i = 1, \ldots, n$. In the paper we prove that the actions from a certain class are linearizable (see Theorem 4), and we indicate some consequences of this fact. © 1998 Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.: 16W30

Let k be a field and let H be a Hopf algebra over k with comultiplication $\Delta: H \to H \otimes$ H ($\otimes = \otimes_k$), antipode $S: H \to H$, and counity $\varepsilon: H \to k$. Recall that a (left) action of H on a k-algebra A is a left H-module structure $\gamma: H \otimes A \to A$ on A as a vector space over k (as usual, we write $\gamma(h \otimes a) = h.a$) such that $h.1_A = \varepsilon(h)1_A$ and $h.(xy) = \sum (h_{(1)}.x)(h_{(2)}.y)$ for all $h \in H$, $x, y \in A$, and $\sum h_{(1)} \otimes h_{(2)} = \Delta(h)$. In other words, A together with γ is an H-module algebra, see [7, 10]. Recall also that such an action is said to be locally finite if A, as an H-module, is a union of its finite dimensional submodules. If H is a finite-dimensional vector space, then clearly every action of H on a k-algebra A is locally finite.

In this paper we consider only actions of H on commutative k-algebras.

^{*} Corresponding author. E-mail: atyc@mat.uni.torun.pl.

Given an action of H on an algebra A, we say that an ideal I in A is H-invariant if $h.x \in I$ for all $h \in H$ and $x \in I$, i.e., if I is a submodule of A, as an H-module. One readily checks that if an ideal I in A is H-invariant, then all its powers I^j are also H-invariant, and so the quotient H-modules I^i/I^j , $j \ge i$, are defined.

Definition 1. An action of H on a local noetherian algebra (A, m) is called linearizable if there exists a minimal system x_1, \ldots, x_n of generators of the maximal ideal m such that $h.x_i \in kx_1 + \cdots + kx_n$ for $i = 1, \ldots, n$ and $h \in H$.

Remark 2. If an action of H on a local noetherian algebra (A, m) is linearizable, then it is easy to see that the maximal ideal m is H-invariant, and that for each basis z_1, \ldots, z_n of m/m^2 over the quotient field A/m, there are y_1, \ldots, y_n in m such that $y_i + m^2 = z_i$ and $h, y_i \in ky_1 + \cdots + ky_n$ for $i = 1, \ldots, n$ and $h \in H$.

Definition 3. The Hopf algebra H is called (left) finitely semisimple if each left finitedimensional H-module is semisimple.

Examples of finitely semisimple Hopf algebras are:

1. H = kG, where G is a finite group with (|G|, char k) = 1.

2. H = k[X]/(f), where k is of characteristic p > 0, f is of the form $t_n X^{p^n} + t_{n-1}X^{p^{n-1}} + \cdots + t_0 X$ with $t_0 \neq 0$, and $\Delta(x) = x \otimes 1 + 1 \otimes x$ for x = X + (f).

3. H = U(L) – the enveloping algebra of a finite-dimensional, semisimple Lie algebra L over k (k is supposed to have characteristic 0).

Notice that if the Hopf algebra H is finitely semisimple and $H \otimes A \to A$ is a locally finite action of H on an algebra A, then every submodule of A, as an H-module, is semisimple.

The main purpose of this note is to prove the following.

Theorem 4. Let $\gamma: H \otimes A \to A$ be an action of the Hopf algebra H on a local noetherian algebra (A,m) such that its maximal ideal m is H-invariant and $k \simeq A/m$. Then the action is linearizable if and only if the H surjection $p: m \to m/m^2$ admits an H retraction $t: m/m^2 \to m$ such that pt = Id. Such a t exists in each of the following cases:

(1) There exists a semisimple H-submodule m' of A such that Am' = m.

(2) A is a complete local ring and the H-modules m/m^i , i > 1, are semisimple.

In particular, if H is finitely semisimple, then the action γ is linearizable if the action is locally finite or if the local ring A is complete.

Proof. First we show that the action γ is linearizable if there exists a homomorphism of H-modules $t: m/m^2 \to m$ such that pt = Id. For that purpose assume that such a t exists and choose $z_1, \ldots, z_n \in m$ which form a basis of m/m^2 over A/m. Then for any $h \in H$ and $i = 1, \ldots, n$ $h.z_i = \sum_{j=1}^{j=n} \alpha_{ij} z_j$ for some $\alpha_{ij} \in k$, since $k \simeq A/m$. Set $x_i = t(z_i)$. Then we easily obtain that $h.x_i = h.t(z_i) = t(h.z_i) = t(\sum_{j=1}^{j=n} \alpha_{ij} z_j) = \sum_{j=1}^{j=n} \alpha_{ij} t(z_j) = \sum_{j=1}^{j=n} \alpha_{ij} x_j$, $i = 1, \ldots, n$. By Nakayama Lemma the x_1, \ldots, x_n form a minimal system of generators

of the ideal *m*, because their images form a basis of m/m^2 . This means that the action γ is linearizable. Conversely, if the action γ is linearizable, then the above consideration indicates how to define a homomorphism of *H*-modules $t:m/m^2 \rightarrow m$ such that pt = ld.

Now, to prove statement (1), suppose that m' is a semisimple *H*-submodule of *A* with Am' = m. Then the homomorphism of *H*-modules $p': m' \to m/m^2$, $p'(x) = x + m^2$, is surjective (as Am' = m and $k \simeq A/m$), and the short exact sequence of *H*-modules

$$O \to m' \cap m^2 \to m' \xrightarrow{p'} m/m^2 \to O$$

splits, since any submodule of a semisimple module is its direct summand. Hence, it follows that there is a homomorphism of H-modules $t':m/m^2 \rightarrow m'$ with p't' = Id. Let $t: m/m^2 \to m$ be the composition of t' and the inclusion $m' \subset m$. Then clearly pt = Id, and thus, by the first part of the proof, statement (1) is proved. Now suppose that the local ring A is complete and that the H-modules m/m^j , j > 0, are semisimple. Similarly as above we need only to construct a homomorphism of Hmodules $t: m/m^2 \to m$ with pt = Id. Let $p_j: m/m^{j+1} \to m/m^j$, $j \ge 2$, be the homomorphisms of H-modules defined by $p_i(x+m^{j+1}) = x+m^j$. Since A is complete, then, by [2, Proposition 10.13], the natural surjections $m \to m/m^{j+1}$, $j \ge 1$, induce an isomorphism of H-modules $m \simeq Lim_{\leftarrow} \{m/m^j m, p_{i+1}\}_{i>1}$. Therefore, to construct a required homomorphism $t: m/m^2 \rightarrow m$, it is sufficient to find homomorphisms of H-modules $t_i: m/m^2 \to m/m^j m = m/m^{j+1}, j \ge 1$, such that $p_{j+1}t_{j+1} = t_j$ for all $j \ge 1$ and $t_1 = Id$. We proceed by induction on j. Set $t_1 = Id$ and assume that t_1, \ldots, t_i have been defined for some $j \ge 1$. By semisimplicity of m/m^{j+2} , there is a homomorphism of H-modules $l: m/m^{j+1} \rightarrow m/m^{j+2}$ such that $p_{i+1}l = ld$. Hence if we put $t_{i+1} = lt_i$, then t_{i+1} is a homomorphism of *H*-modules with $p_{i+1}t_{i+1} = p_{i+1}lt_i = t_i$. This completes the proof of statement (2), and consequently Theorem 4 follows. \Box

Now we give a few consequences of Theorem 4.

In view of Examples 1-3, a direct consequence of Theorem 4 is the following.

Corollary 5. Let (A,m) be a local algebra with $k \simeq A/m$.

(1) For any finite group G of automorphisms of A with (|G|, char k) = 1 there exists a minimal system of generators x_1, \ldots, x_n of the maximal ideal m such that $g(x_i) \in kx_1 + \cdots + kx_n$ for all $g \in G$ and $i = 1, \ldots, n$.

(2) If char k = p > 0 and $d: A \to A$ is a derivation of A such that $d(m) \subset m$ and d satisfies an equation f(d) = 0 with $f(X) = t_s X^{p^s} + t_{s-1} X^{p^{s-1}} + \cdots + t_0 X$, $t_i \in k$, $t_0 \neq 0$, then there exists a minimal system of generators x_1, \ldots, x_n of m such that $d(x_i) \in kx_1 + \cdots + kx_n$ for $i = 1, \ldots, n$. Moreover, if the field k is algebraically closed, a minimal system of generators x_1, \ldots, x_n can be chosen in such a way that $d(x_i) = \lambda_i x_i$, $i = 1, \ldots, n$, where all λ 's are roots of the equation f(X) = 0 in k.

(3) Suppose that L is a finite-dimensional, semisimple Lie algebra over k, char k = 0, and $\lambda: L \to \text{Der } A$ is a morphism of Lie algebras such that $\lambda(a)(m) \subset m$ for $a \in L$. Then there exists a minimal system of generators x_1, \ldots, x_n of m such that $\lambda(a)(x_i) \in kx_1 + \cdots + kx_n$ for all $a \in L$ and $i = 1, \ldots, n$. **Remark.** For $A = k[[Y_1, ..., Y_n]]$ the second part of statement (2) follows from [1, Lemma (6.4)]. For $A = \mathbb{C}[[Y_1, ..., Y_n]]$ and $L = sl(2, \mathbb{C})$ statement (3) was proved in [11, Proposition 2.1].

Corollary 6 (Well known). Suppose that the field k is algebraically closed and V is an affine variety with a regular action of a linear algebraic group G (V and G defined over k). Moreover, suppose that $x \in V$ is such that the isotropy subgroup $G_x = \{g \in G, g.x = x\}$ is linearly reductive. Then the induced action of G_x on the local algebra $O_{V,x}$ is linearizable.

Proof. Let k[V] denote the algebra of the regular functions. Then the action of G on V induces a (locally finite) action of the Hopf algebra $H = kG_x$ on k[V] and $O_{V,x} = k[V]_{m_x}$ (given by $(g.f)(v) = f(g^{-1}v)$ for $g \in G_x$, $f \in k[V]$ or $f \in O_{V,x}$, and $v \in V$). We obtain that m_x – the maximal (*H*-invariant) ideal in k[V] corresponding to x – is a semisimple *H*-submodule of $O_{V,x}$, because G_x is linearly reductive. Furthermore, m_x generates the maximal ideal of $O_{V,x}$. The conclusion now follows, by part (1) of Theorem 4.

Remark 7. Without any assumption on G_x there always exists a system of generators f_1, \ldots, f_r of $m_x O_{V,x}$ not necessarily minimal such that $g.f_i \in kf_1 + \cdots + kf_r$ for $i = 1, \ldots, r$ and all $g \in G$. This is so since V can be G-equivariantly embedded as a closed subvariety of an affine *n*-space with a linear action.

In the characteristic zero case G_x is linearly reductive if G is linearly reductive and the orbit G_x is closed [6].

In order to formulate the next results, let us recall that given an action of the Hopf algebra H on an algebra A, $A^H = \{a \in A, \forall_{h \in H} h.a = \varepsilon(h)a\}$ is a subalgebra in A called the *algebra of invariants*. If V is a vector space over k, then an action of H on the symmetric (graded) algebra $S(V) = \bigoplus_{i \ge 0} S^i(V)$ is said to be *linear* if $h.V \subset V$ for each $h \in H$ or, equivalently, if $h.S^i(V) \subset S^i(V)$ for $h \in H$, $i \ge 0$. In particular, an action of H on the algebra of polynomials $k[X_1, \ldots, X_n] = S(kX_1 + \cdots + kX_n)$ is linear if $h.X_i \in kX_1 + \cdots + kX_n$ for all $h \in H$ and $i = 1, \ldots, n$. Obviously, any linear action of H on S(V) is locally finite, whenever V is finite-dimensional, and $S(V)^H$ is a graded subalgebra of S(V). Exactly in the same manner as for the rational actions of linear algebraic groups on algebras (see, e.g., [4, Ch. V]) one proves the following.

Proposition 8. Assume that H is finitely semisimple and $H \otimes A \rightarrow A$ is a locally finite action of H on an algebra A.

(1) If A is noetherian, then the algebra of invariants A^{H} is also noetherian. Moreover, if A = S(V), where V is of finite dimension, and the action is linear, then $S(V)^{H}$ is a finitely generated k-algebra.

(2) If H is cocommutative (i.e., $t\Delta = \Delta$, where $t: H \otimes H \to H \otimes H$ is a linear map given by $t(x \otimes y) = y \otimes x$) and A is finitely generated, then A^H is also finitely generated.

Now we can prove.

Theorem 9. Suppose that the Hopf algebra H is finitely semisimple, $A = k[[Y_1, ..., Y_n]]$, and that H acts on A in such a way that the maximal ideal m of A is H-invariant.

(1) There exist $X_1, ..., X_n$ in *m* such that $A = k[[X_1, ..., X_n]]$ and $h.X_j \in kX_1 + \cdots + kX_n$ for $h \in H$, j = 1, ..., n.

(2) The natural H-module structure on m/m^2 extends (uniquely) to a linear action of H on the symmetric algebra $S(m/m^2)$ such that A^H is isomorphic to the completion of $S(m/m^2)^H$ in the topology defined by the powers of its irrelevant maximal ideal. (3) A^H is a complete local noetherian ring.

Proof. Part (1) of the theorem is a consequence of part (2) of Theorem 4. As for part (2), notice that if X_1, \ldots, X_n are as in part (1), then the restriction of the action of H on A gives us a linear action of H on $k[X] = k[X_1, ..., X_n]$. Hence, by means of the isomorphism of k-algebras $F: k[X] \to S(m/m^2)$ determined by $F(X_i) = X_i + m^2$, i = 1, ..., n, we may define a unique linear action of H on $S(m/m^2)$ such that F(h, f) = h.F(f)for $h \in H$ and $f \in k[X]$. It follows that F induces an isomorphism of the completions of the graded algebras $k[X]^H$ and $S(m/m^2)^H$ in the topologies defined by the powers of the corresponding irrelevant maximal ideals. Therefore, to prove (2), it suffices to show that the algebra A^H is isomorphic to the completion of $k[X]^H$ in the $M = (X_1, \ldots, X_n) \cap k[X]^H$ -adic topology. It is clear that A^H is isomorphic to the completion of $k[X]^H$ in the topology defined by the degree. Moreover, from Proposition 8(1) we know that $k[X]^H$ is a finitely generated (graded) k-algebra. In view of [5, II.2.1, 6(vi)], this implies that the topology in $k[X]^H$ defined by the degree is equivalent to the *M*-adic topology. So, part (2) is proved. Part (3) of the theorem follows from the proof of part (2), since it has been shown above that A^{H} is the completion of the noetherian algebra $k[X]^H$ in the *M*-adic topology. \Box

An immediate consequence of part (2) of the above theorem applied to H from Example 1 is the following particular case of the main result of [9] (see also, [3, par. 5, Example 7]).

Corollary 10. If G is a finite group of automorphisms of the algebra $k[[X]] = k[[X_1,...,X_n]]$ such that (|G|, char k) = 1 and the image of G under the induced homomorphism of groups $G \to GL(m/m^2)$, $m = (X_1,...,X_n)$, is a (finite) reflection group, then the algebra of invariants $k[[X]]^G$ is isomorphic to k[[X]].

Now let us assume that the field k is algebraically closed and V is an algebraic variety over k. Moreover, let G be a finite group acting (regularly) on V in such a way that each point of V is contained in an affine G-invariant subset of V (this assumption is verified in case V is quasiprojective). Then the space of orbits V/G has a natural structure of algebraic variety and the natural map $\pi: V \to V/G$ is a finite

morphism of varieties, see [8, Ch. II, par. 7, Theorem 1]. Let $x \in V$ and let m_x be the maximal ideal in $O_{V,x}$. Then the action of G on V induces an action of the isotropy group G_x on the completion $\widehat{O}_{V,x}$ of the ring $O_{V,x}$ and a linear action of G_x on the vector space m_x/m_x^2 . The latter action induces in turn an action of G on the algebra $S(m_x/m_x^2)$. In this situation the following holds.

Theorem 11. (1) $\widehat{O}_{V'G,\pi(x)}$ is isomorphic to the algebra $(\widehat{O}_{V,x})^{G_{\chi}}$.

(2) If x is a regular point of V and $(|G_x|, char k) = 1$, then $\widehat{O}_{V/G,\pi(x)}$ is isomorphic to the completion of $S(m_x/m_x^2)^{G_x}$ in the topology defined by the powers of its irrelevant (maximal) ideal.

Proof. Part (1) is known in the case where $G_x = (e)$ [8, Ch. II, par. 7, Theorem 1]. The proof easily carries over to the general case. As for part (2), in view of regularity of x, $\hat{O}_{V,x} \simeq k[[X_1, \ldots, X_n]]$ (for some n), whence, using (1), $\hat{O}_{V/G,\pi(x)} \simeq (\hat{O}_{V,x})^{G_v} \simeq [[X_1, \ldots, X_n]]^{G_v}$. The conclusion now follows from part (2) of Theorem 9 applied to $H = kG_x$. \Box

References

- [1] A.G. Aramova, L.L. Avramov, Singularities of quotients by vector fields in characteristic p, Math. Annalen 273 (1986) 629-645.
- [2] M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
- [3] N. Bourbaki, Groupes et Algèbres de Lie, Ch. V, Hermann, Paris, 1968.
- [4] J. Fogarty. Invariant Theory, Benjamin, New York, 1969.
- [5] A. Grothendieck, J. Dieudonné, EGA, Inst. Hautes Etudes Sci. Publ. Math. 2 (8) (1961).
- [6] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J. 16 (1960) 205.
- [7] S. Montgomery, Hopf Algebras and Their Actions on Rings, Regional Conf. Series in Mathematics, vol. 82, 1992.
- [8] D. Mumford, Abelian Varieties, Oxford University Press, Oxford, 1970.
- [9] J.-P. Serre, Groupes finis d'autmorphismes d'anneaux locaux reguliers, Colloque d'Algèbre E.N.S.J.F., 1967.
- [10] M.E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
- [11] St.S.-T. Yau, Singularities defined by $sl(2, \mathbb{C})$ invariant polynomials and solvability of Lie algebras arising from isolated singularities, Am. J. Math. 108 (1986) 1215–1240.