JOURNAL OF
PURE AND
APPLIED ALGEBRA

ELSEVIER Journal of Pure and Applied Algebra 130 (1998) 217--222

A note on linearization of actions of finitely semisimple
Hopf algebras on local algebras

M. Boratyniski?, Andrzej Tyc "™

d Dipartimento di Muatematica, Universita degli Studi di Bari, via E.Orahona 4. 70125 Bari, Italy
> Fuculty of Mathematics and Informatics, N. Copernicus University,
ul. Chopina 12-18, 87-100 Torun, Poland

Communicated by C.A. Weibel; received 28 March 1996

Abstract

Let H be a Hopf algebra over a field & and let H & A — A4, h®a—h.a, be an action
of H on a commutative local Noetherian £-algebra (4,m). We say that this action is linear-
izable if there exists a minimal system xi,...,x, of generators of the maximal ideal m such that
h.xi€kx +---+kx, forall h€ H and i=1,...,n. In the paper we prove that the actions from a
certain class are linearizable (see Theorem 4), and we indicate some consequences of this fact.
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Let & be a field and let A be a Hopf algebra over k with comultiplication A: H —H ¢
H (& =®y), antipode S:H — H, and counity ¢:H — k. Recall that a (left) action
of H on a k-algebra A4 is a left H-module structure y:H ©4—A4 on 4 as a vec-
tor space over A (as usual, we write y(h®a)=h.a) such that h.1,=¢(h)l4 and
h.(xy)=>3"(hay.x)(hay. ) for all heH, x,y€A, and > h) @ hiy = A(h). In other
words, 4 together with 7 is an H-module algebra, see [7,10]. Recall also that such
an action is said to be locally finite if 4, as an H-module, is a union of its finite
dimensional submodules. If A is a finite-dimensional vector space, then clearly every
action of H on a k-algebra A is locally finite.

In this paper we consider only actions of H on commutative k-algebras.
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Given an action of H on an algebra 4, we say that an ideal / in 4 is H-invariant
if A.xel for all heH and xcl, ie., if [ is a submodule of 4, as an H-module.
One readily checks that if an ideal [ in A4 is H-invariant, then all its powers I/ are
also H-invariant, and so the quotient H-modules I7/I/, j> i, are defined.

Definition 1. An action of H on a local noetherian algebra (4,m) is called linearizable
if there exists a minimal system x,,...,x, of generators of the maximal ideal m such
that 2. x;€kx; + -+ kx, fori=1,...,n and he H.

Remark 2. If an action of H on a local noetherian algebra (A4, m) is linearizable, then it
is easy to see that the maximal ideal m is H-invariant, and that for each basis zy,...,z,
of m/m?® over the quotient field A/m, there are yy,...,y, in m such that y, + m> =z
and h.y;€ky, +---+ky, fori=1,....,n and heH.

Definition 3. The Hopf algebra H is called (left) finitely semisimple if each left finite-
dimensional H-module is semisimple.

Examples of finitely semisimple Hopf algebras are:

1. H=kG, where G is a finite group with (|G|, chark)=1.

2. H=k[X]/(f), where k is of characteristic p>0, f is of the form ¢, X" +
tn_l)(""f1 + -+t X with 470, and A(x)=x®@ 1 +1®x for x=X + (/).

3. H=U(L) - the enveloping algebra of a finite-dimensional, semisimple Lie algebra
L over k (k is supposed to have characteristic 0).

Notice that if the Hopf algebra # is finitely semisimple and H ® 4 — 4 is a locally
finite action of H on an algebra A, then every submodule of 4, as an A-module, is
semisimple.

The main purpose of this note is to prove the following.

Theorem 4. Let y:H ® A — A be an action of the Hopf alyebra H on a local noethe-
rian algebra (A,m) such that its maximal ideal m is H-invariant and k ~ A/m. Then
the action is linearizable if and only if the H surjection p:m — m/m* admits an H
retraction t:mjm*> —m such that pt=Id. Such a t exists in each of the following
cases:

(1) There exists a semisimple H-submodule m’ of A such that Am’ =m.

(2) A is a complete local ring and the H-modules m/m', i>1, are semisimple.
In particular, if H is finitely semisimple, then the action 7y is linearizable if the action
is locally finite or if the local ring A is complete.

Proof. First we show that the action y is linearizable if there exists a homomorphism of
H-modules 1:m/m* — m such that pt =Id. For that purpose assume that such a ¢ exists
and choose z,, ..., z, € m which form a basis of m/m? over A/m. Then for any h€ H and
i=1,...,n h.zi:Z';:f a;;z; for some a;; €k, since k =~ A/m. Set x; =t(z;). Then we
casily obtain that h.x;=h.t(z;)=t(h.z) = t(3 1 wiyz;) = D177 it () = 1) 2%
i=1,...,n. By Nakayama Lemma the x|,...,x, form a minimal system of generators
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of the ideal m, because their images form a basis of m/m>. This means that the action y
is linearizable. Conversely, if the action 7 1s linearizable, then the above consideration
indicates how to define a homomorphism of H-modules ¢ : m/m? — m such that pr=1d.
Now, to prove statement (1), suppose that m’ is a semisimple H-submodule of 4
with Am’ = m. Then the homomorphism of H-modules p’:m’ — m/m*, p'(x)=x+m",
is surjective (as Am’ =m and k ~ A/m), and the short exact sequence of H-modules

)
2 r 2
O—m'nm —m -5 mim*— 0

splits, since any submodule of a semisimple module is its direct summand. Hence. it
follows that there is a homomorphism of H-modules t':m/m* — m’ with p't' =Id.
Let 7:m/m> —m be the composition of ¢’ and the inclusion m’C m. Then clearly
pt=1Id, and thus, by the first part of the proof, statement (1) is proved. Now sup-
pose that the local ring 4 is complete and that the H-modules m/m’/, j>0, are
semisimple. Similarly as above we need only to construct a homomorphism of H-
modules 7:m/m* —m with pt=1Id. Let p;:m/m/*" —m/m/. j>2. be the homomor-
phisms of H-modules defined by p;(x +m/™')=x+m/. Since 4 is complete, then, by
[2, Proposition 10.13], the natural surjections m — m/m’/*', j>1, induce an isomor-
phism of H-modules m ~ Lim._{m/m/m, p;.,},>,. Therefore, to construct a required
homomorphism ¢:m/m? —m, it is sufficient to find homomorphisms of H-modules
tiimim* —m/m'm=m/m’", j>1, such that p;it;41 =1t for all j>1 and 1, =/d.
We proceed by induction on j. Set #; = /d and assume that #,,....1;, have been defined
for some j > 1. By semisimplicity of m/m/*2, there is a homomorphism of H-modules
[:m/m/*" — m/m/** such that p,. 1/ =1Id. Hence if we put r;. =Ir;, then 1,1, is a
homomorphism of H-modules with p; ¢, = p;1/t; =1;. This completes the proof
of statement (2), and consequently Theorem 4 follows. [

Now we give a few consequences of Theorem 4,
In view of Examples 1-3, a direct consequence of Theorem 4 is the following.

Corollary 5. Let (A,m) be a local algebra with k ~ Afm.

(1) For any finite group G of automorphisms of A with (|G|, chark)=1 there
exists a minimal system of generators xi,...,x, of the maximal ideal m such that
gxiyekxy + -+ kx, for all gcG and i=1,....n.

(2) If chark=p>0 and d:4— A is a derivation of A such that d(m)Cm and
d satisfies an equation f(d)=0 with f(X)=1t,X" + D GRS X, LER,
to#0, then there exists a minimal system of generators x\,....x, of m such that
d(x;Yekx) 4+ - +kx, for i=1,....n. Moreover, if the field k is algebraically closed,
a minimal system of generators x,...,x, can be chosen in such a way that d(x;) = 7,x;.
i=1.....n, where all 2’s are roots of the equation f(X)=0 in k.

(3) Suppose that L is a finite-dimensional, semisimple Lie algebra over k, char k =0,
and 4:L— Der A4 is a morphism of Lie algebras such that i(a)(m)Cm for acL. Then
there exists a minimal system of generators x,,....x, of m such that ;(a)(x;)Ekxy -+
<o+ hkx, for all ael and i=1,....n
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Remark. For A=k[[Y(,...,Y,]] the second part of statement (2) follows from
(1, Lemma (6.4)]. For A=C[[Y),...,Y,]] and L=s/(2,C) statement (3) was proved
in [11, Proposition 2.1].

Corollary 6 (Well known). Suppose thatr the field k is algebraically closed and
V is an affine variety with a regular action of a linear algebraic group G (V and
G defined over k). Moreover, suppose that x€V is such that the isotropy subgroup
Gy ={9€G, g.x=x} is linearly reductive. Then the induced action of G, on the local
algebra Oy, is linearizable.

Proof. Let £[V'] denote the algebra of the regular functions. Then the action of G on ¥
induces a (locally finite) action of the Hopf algebra H =G, on k[V] and Oy, =k[V],,
(given by (g.f ) (v)= f(g 'v) for g€G,, f€k[V] or f€O0y,, and veV ). We obtain
that m, —the maximal (H-invariant) ideal in £[}] corresponding to x—is a semisimple
H-submodule of Oy, because G, is linearly reductive. Furthermore, m, generates the
maximal ideal of Oy ,. The conclusion now follows, by part (1) of Theorem 4. O

Remark 7. Without any assumption on G, there always exists a system of genera-
tors f1,..., f, of m,Op not necessarily minimal such that g.f;€kf) +--- + kf, for
i=1,...,r and all geG. This is so since ¥V can be G-equivariantly embedded as a
closed subvariety of an affine n-space with a linear action.

In the characteristic zero case G, is linearly reductive if G is linearly reductive and
the orbit Gx is closed [6].

In order to formulate the next results, let us recall that given an action of the
Hopf algebra // on an algebra 4, A" = {a€ A, V4ey h.a=¢(h)a} is a subalgebra in 4
called the algebra of invariants. If V is a vector space over k, then an action of /4 on
the symmetric (graded) algebra S(V)= @, ,SY(V) is said to be linear if h.V CV
for each A€ H or, equivalently, if h.S’(V)C_S’(V) for h€H, i > 0. In particular, an
action of H on the algebra of polynomials k[X),..., X, ]=S(kX, + -+ kX)) is linear
if hX;ekX) + -+ kX, for all he H and i=1,...,n. Obviously, any linear action
of H on S(V) is locally finite, whenever V is finite-dimensional, and S(V)” is a
graded subalgebra of S(V). Exactly in the same manner as for the rational actions of
linear algebraic groups on algebras (see, e.g., [4, Ch. V]) one proves the following.

Proposition 8. Assume that H is finitely semisimple and H A4 — A is a locally finite
action of H on an algebra A.

(1) If A is noetherian, then the algebra of invariants A" is also noetherian.
Moreover, if A=S(V), where V is of finite dimension, and the uction is linear, then
SV is a finitely generated k-algebra.

(2) If H is cocommutative (i.e., tA=A, where t :H@QOH —H QH is a linear map
given by t(x® y)=y®x) and A is finitely generated, then A" is also finitely gener-
ated.
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Now we can prove.

Theorem 9. Suppose that the Hopf algebra H is finitely semisimple, A=k[[Y].....
Yall, and that H acts on A in such a way that the maximal ideal m of A is H-
invariant.

(V) There exist Xy,...,X, in m such that A=k[[X)...., Xl and h. X, ek X+ -+
kX, for heH, j=1,...,n

(2) The natural H-module structure on m/m* extends (uniquely) to a linear action
of H on the symmetric algebra S(m/m*) such that A" is isomorphic to the completion
of S(mim?)" in the topology defined by the powers of its irrelevant maximal ideal.

(3) A7 is u complete local noetherian ring.

Proof. Part (1) of the theorem is a consequence of part (2) of Theorem 4. As for part
(2), notice that if X},...,X, are as in part (1), then the restriction of the action of H
on A gives us a linear action of H on k[X]=k[X),...,X,]. Hence, by means of the iso-
morphism of k-algebras F : k[X] — S(m/m?) determined by F(X;) = X;+m?, i=1..... i,
we may define a unique linear action of H on S(m/m?) such that F(h.f)=h.F(})
for he H and f<k[X]. It follows that F induces an isomorphism of the comple-
tions of the graded algebras k[X]" and S(m/m?)! in the topologies defined by the
powers of the corresponding irrelevant maximal ideals. Therefore, to prove (2), it suf-
fices to show that the algebra 4/ is isomorphic to the completion of k[X]" in the
M =(X,,...,X,) Nk[X]"-adic topology. It is clear that 4" is isomorphic to the com-
pletion of k[X]" in the topology defined by the degree. Moreover, from Proposition
8(1) we know that k[X]" is a finitely generated (graded) k-algebra. In view of [3,
11.2.1, 6(vi)], this implies that the topology in £[{X]” defined by the degree is equiv-
alent to the M-adic topology. So, part (2) is proved. Part (3) of the theorem follows
from the proof of part (2), since it has been shown above that 4”7 is the completion
of the noetherian algebra k[X]” in the M-adic topology. [J

An immediate consequence of part (2) of the above theorem applied to # from
Example 1 is the following particular case of the main result of [9] (see also, [3,
par. 5, Example 7]).

Corollary 10. If G is a finite group of automorphisms of the algebra k[[X]]=
kl[Xy,.... X, 1] such that (|G|, char k)= 1 and the image of G under the induced homo-
morphism of groups G — GL(m/m?*), m=(X\,...,X,). is a (finite) reflection group.
then the algebra of invariants k[[ X1 is isomorphic to k[[X]].

Now let us assume that the field £ is algebraically closed and V' is an algebraic
variety over k. Moreover, let G be a finite group acting (regularly) on ¥ in such
a way that each point of V' is contained in an affine G-invariant subset of V (this
assumption is verified in case ¥ is quasiprojective). Then the space of orbits V/G has
a natural structure of algebraic variety and the natural map n:J — V/G is a finite
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morphism of varieties, see [8, Ch. II, par. 7, Theorem 1]. Let x& /¥ and let m, be the
maximal ideal in Oy . Then the action of G on V induces an action of the isotropy
group G, on the completion (3;;,‘, of the ring Oy, and a linear action of G, on the
vector space ni,/m:. The latter action induces in turn an action of G on the algebra
S(my/m?). In this situation the following holds.

Theorem 11. (1) Oy ny) is isomorphic to the algebra (Oy )%

(2) If x is a regular point of V and (|G,|,char k)= 1, then 51:,(;_ vy I8 isomorphic to
the completion of S(m,/m)% in the topology defined by the powers of its irrelevant
(maximal) ideal.

Proof. Part (1) is known in the case where G,=(e) [8, Ch. Il, par. 7, Theorem 1].
The proof easily carries over to the general case. As for part (2), in view of regularity
of x, Oy ~k[[Xi.....X,]] (for some n), whence, using (1), (A);,j,G,n(x):((A)m)(’\ ~
[[Xi.....X,]1%. The conclusion now follows from part (2) of Theorem 9 applied to
H=kG,. [
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